JOURNAL OF MATERIALS SCIENCE 32 (1997) 1835-1840

Effects of elastic relaxation on aspect ratios during
island growth of isotropic films
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The effect of misfit strain on the equilibrium aspect ratio of isotropic islands has been
investigated by using numerical calculations of the elastic strain energy of spherical caps on
a substrate. The effects of three dimensionless quantities were investigated: the ratio of the
surface energy to strain energy, the modulus mismatch and the ratio of the interfacial energy
to the surface energy of the island. It was shown that values of these parameters that tended
to increase the strain energy dominance resulted in larger equilibrium aspect ratios
(height-to-width ratio). The effect of modulus mismatch was also studied. It has been shown
that as the modulus of the substrate increases relative to the island (keeping all other
parameters constant), the aspect ratio increases. Furthermore, it has also been shown that
island-to-island interactions occur over very short ranges, becoming negligible when the

midpoint of the islands are separated by more than two diameters.

1. Introduction
Heteroepitaxial films are becoming increasingly
important for use in optical and microelectronic ap-
plications. In order to ensure optimal performance of
these devices, it is essential to grow uniform, defect-
free films. Therefore, over recent years there has been
considerable interest in understanding the physics
governing the growth of these films. Three primary
mechanisms have been identified: (i) uniform layer-
by-layer growth, (ii) isolated island growth and (iii) an
intermediate regime in which three-dimensional
clusters grow on top of a uniform deposit. These
three modes of growth are often referred to as the
Frank-van der Merwe, Volmer—Weber and
Stranski—Krastinov modes, respectively [1, 2].
Which mechanism dominates depends on the
kinetics of film growth, the relative magnitudes of the
interfacial energies between the film, substrate and
environment, and the stress in the film. For example,
classical theories of wetting predict complete coverage
of the substrate by the film if

Yov = Vst + Yivs (1)

where 7 is the specific interfacial energy and the sub-
scripts “sf”, “sv” and “fv” denote the substrate—film,
substrate—vapour and film—vapour interfaces respec-
tively. Gilmer and Grabow [3] used molecular-
dynamics techniques to consider the effects of the
misfit strain in the film, and the ratio between the
film—substrate interaction energy and the self-interac-
tion energy of the film, W. They showed that if the
misfit strain is non-zero, so that the overall strain
energy of the film can be reduced by the formation of
clusters [4-8], Volmer—Weber growth occurs for low
values of W, while Stranski—Krastinov growth occurs
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at higher values. One way of quantifying the strain-
energy reduction of different island shapes is to use the
concept of an effective misfit strain. For example, this
concept was developed by Luryi and Suhir [5] for
a two-dimensional laterally-limited structure, while
Christiansen et al. [6,7] have developed a similar
function for three-dimensional faceted structures of
varying aspect ratios and facet angles.

The investigations described above have concen-
trated on the reduction of strain energy of the system.
However, the total energy of a film—substrate system
must include surface-energy terms. The effect of v;, on
the stability of a completely wetting film has been
examined by a number of authors [9—13]. It has been
demonstrated that, while the strain energy of a com-
pletely wetting film can be lowered by the formation of
surface roughness, the process occurs at the cost of an
increased surface energy. Therefore, there is a natural
length scale for roughening which emerges from this
competition. For example, if the film and substrate
have identical elastic properties, the critical
wavelength for surface roughness at which the growth
of small perturbations on the film surface are energeti-
cally favoured is given by [12, 13]

hee = 11.9871,Gr/05 (2)

where Gy is the shear modulus of the film and o is the
residual stress in the film.

The effects of a competition between strain and
surface energies are also expected to control the evolu-
tion of the growth mode when the substrate is not
completely covered. In this regime, additional terms
associated with the substrate—film interface and the
substrate—vapour interface are expected to be signifi-
cant. A simple model in which it is assumed that the
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surface energies of the substrate—film interface and the
substrate—vapour interface are identical (i.e. the con-
tact angle between the film and substrate is 90°), and
that a hemispherical cap can support no elastic strain
is given by Tu et al. [1]. By comparing the total strain
and surface energies of a uniform film to the surface
energy of a series of hemispherical islands of the same
total volume, they demonstrate that clusters with
a volume greater than a critical size V, will always
have a lower energy than the equivalent uniform film.
This critical volume is given by
-1
+ 1} (3)

where E; is Young’s modulus, v; is Poisson’s ratio, € is
the misfit strain and h is the thickness of the equivalent
uniform film (i.e. the volume of film per unit area of
substrate).

As an extension of the analysis described above, the
purpose of this paper is to examine the effects of (i) the
relative magnitudes of the v, v, and v¢,, and (ii) the
residual elastic strain energy associated with an island
on a substrate. This is done for an isotropic material
by assuming that the island is in the form of
a spherical cap. The surface energy of this shape can be
computed analytically, while the strain energy arising
from a misfit strain must be computed numerically. (It
should be emphasized that, in these calculations, the
strain energy includes a contribution from the sub-
strate [6, 7]. The strain in the substrate is zero only
when a film uniformly covers a very thick substrate.
When a film breaks up into islands, the strain in the
film is reduced, but localized regions of strain are
induced within the substrate.) The equilibrium config-
uration of an island is found by determining the aspect
ratio at which the total energy is minimized for a given
volume, misfit strain and combination of interfacial
energies.

As an approximate analysis for an isotropic mater-
ial, this search for minimum-energy configurations has
been limited to shapes that consist of spherical caps.
The assumption that the shape can be approximately
described by a spherical cap considerably eases the
computational aspect of the search for an equilibrium
configuration. The island can be completely character-
ized by only two parameters, the volume and a contact
angle between the film and substrate (Fig. 1). In prac-
tice, it is recognized that the island will not, in general,
be exactly spherical. The equilibrium configuration is
dictated by the condition that the chemical potential
must be constant over the entire surface, as any differ-
ence in potential will result in atomic diffusion to
restore equality. The chemical potential at any point
on the surface of a cap is given by

pi3
h

E;e3h
(I = V)7re

= (18113 [

H=Ho + Q[Vr(Ky + K3) + W] 4

where p, is a reference potential, Q is the atomic
volume, k; and x, are the principal curvatures, and
W, is the strain-energy density at the surface. Only
if the surface strain energy is constant everywhere,
will the equilibrium shape be a spherical cap for an
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Figure 1 Schematic illustration of the configuration analysed in this
paper. An island of volume V is in the form of a spherical cap, and is
elastically bonded to a substrate with an effective contact angle 0.
This effective contact angle is, in general, different from the micro-
scopic contact angle at the triple junction between film, substrate
and vapour. The Young’s modulus of the island is denoted by Eg,
that of the substrate by E. Poisson’s ratio of both are assumed to be
equal to v.

isotropic material (and a faceted island for
non-isotropic surface energies). In general, there will
be gradients of strain energy owing to local stress
concentrations, and a complete solution to this
problem would require finding a minimum-energy
configuration when both the shape and aspect ratio
vary. The deviation from a spherical surface is
expected to become particularly pronounced in the
region of contact between the film and substrate, since
it is in this region that the strain gradients are highest.
For the purposes of this paper, it is assumed that the
details of the shape provide a second-order effect to
the total energy of the system, while the first order
effects are provided by the general aspect ratio of the
island. It is assumed that this aspect ratio is captured
by an effective contact angle, 0. Islands with a low
height-to-width ratio are denoted by a small contact
angle, those with a higher aspect ratio are denoted by
a larger effective contact angle. As shown schemati-
cally in Fig. 1, this effective contact angle is unrelated
to the actual microscopic contact angle at the triple
junction between the substrate, vapour and island
which is established by the three interfacial quantities.

2. Analysis and discussion

The geometry considered in the analysis presented in
this section is shown in Fig. 1. An axisymmetric
spherical cap with a volume ¥ and a contact angle 0 is
elastically bonded to a substrate of infinite depth. The
Young’s modulus of the film and substrate are E; and
E,, respectively; Poisson’s ratio of the two are assumed
to be identical and equal to v. (In this study, we did not
investigate the effect of a Poisson’s ratio mismatch
between the film and substrate.) The strain energy of
this configuration was calculated using the ABAQUS
finite-element program with the misfit strain, gy, being
modelled by assigning different coefficients of thermal
expansion to the film and substrate, and then subject-
ing the system to a temperature rise. The effects of
contact angle, modulus mismatch (£ = E;/E;), and
volume of the film on the strain energy were investi-
gated numerically. Owing to the stress singularity at
the edge of the island, a series of mesh refinements was
used to ensure that a mesh-independent strain energy
was obtained. The strain energy, which is normalized
by E;ggV/(1 — v), is presented in Fig. 2 as a function
of effective contact angle and modulus mismatch for
a single, isolated island. Fig. 3 shows the effects of the



interaction between neighbouring islands, assuming
axisymmetry. This has been plotted for three different
values of modulus mismatch and a contact angle of
90°. Calculations for other contact angles show similar
effects; in particular, it will be noted that any interac-
tion between neighbouring islands is of extremely
short order.

The surface energy of the substrate and island is
given by

Us = Afvyfv - Asf(’\/sv - YSf) (5)

plus an arbitrary constant, where A represents the
interface area. Both A4y, and A can be readily deter-
mined as analytical expressions of the contact angle
and volume of a spherical cap. The normalized surface
energy, U,/y;, V273, is plotted as a function of the
effective contact angle for different values of the para-
meter N = (Vs — Ysr)/Vey in Fig. 4. It will be noted that
the minimum energy condition is given by the well
known Young—Dupré equation:

0. =cos 'm (6)

The total energy of the system, U, is given by the
sum of the surface and strain energies. It depends on
three non-dimensional parameters, 1, X, and

& = ’va(l - V)/EfS(Z)Vl/35 (7)

which measures the relative importance of the strain
and surface energies. The effects of these three para-
meters on the normalized total energy of the system,
Uwi(1 — v)/E¢ed V, are illustrated in Fig. 5a—c.

2.1. Equilibrium configuration
The equilibrium shape of an isolated island deposited
on a substrate will be that which gives the minimum
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Figure 2 Normalized strain energy plotted as a function of effective
contact angle for different values of the modulus-mismatch ratio.
The error bars indicate the approximate magnitudes of the errors
associated with the numerical calculations. Key: ¢ X =0.1;
HX=1AX=10

total energy of the system. This equilibrium configura-
tion can be obtained by an examination of the data
summarized in Fig. 5. A summary of the effects of
both m and & (the parameters which measure the
relative interfacial energies and the relative import-
ance of the strain- and surface-energy terms) on the
aspect ratio of an isolated island is presented in the
three-dimensional plot of Fig. 6. This figure shows the
aspect ratio for which the total energy of a substrate
—island system (with identical elastic constants) is
minimized as a function of both n and &. It will be
observed from the plot that, at low values of &, the
island takes up a very large aspect ratio to minimize
the strain energy. Conversely, at large values of &,

surface-energy considerations dominate. For all
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Figure 3 Normalized strain energy plotted as a function of distance
from neighbouring islands for different values of the modulus-mis-
match ratio. The radius of the island is r, while the distance to the
midpoint between two islands is given a. These calculations have
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Figure 4 Normalized surface energy plotted as a function of the
effective contact angle.
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Figure 5 Normalized total energy plotted as a function of contact
angle for (a) different values of interfacial-energy ratio (X =1 and
n = 0), (b) surface-to-strain-energy ratio (X =1 and & = 0.05) and
(c) modulus-mismatch ratio (n = 0.5 and & = 0.1).
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values of n above 1, the minimum energy tends to
minus infinity at the point when the substrate is com-
pletely wetted (§ = 0). There are, however, local minima
that may exist in the total-energy/contact-angle plot as
shown in Fig. 5. So, in principle, a spreading island may
be trapped in a metastable equilibrium at a finite
contact angle. The local minimum will be shallow for
high values of £ and n, and will probably be overcome
by any thermal energy of the film. When & and n are
large enough, the minima disappear completely and the
total energy decreases monotonically as the effective
contact angle decreases to zero.

The effect of the modulus mismatch can be deduced
from Fig. 2. This figure demonstrates that, for a given
film modulus, the strain energy of the system increases
as the modulus of the substrate is increased (i.c. as
% decreases). Hence for a given value of the interfacial-
energy ratio, &, the contribution of the strain energy to
the total energy of the system increases as X decreases.
This will tend to move the equilibrium contact angle
to higher values as shown in Fig. 7.

The continuum calculations have some immediate
relevance to the experimental observations of
LeGoues et al. [14] in which the growth of germanium
islands on a silicon substrate was observed in an
ultra-high-vaccum transmission-electron microscope.
These observations indicated that growth occurred in
a discrete fashion: the projected area of an island
increased only with the nucleation of individual misfit
dislocations. The authors proposed that this implied
that the height and, hence, the aspect ratio of the
islands increased with volume while the effective misfit
strain stayed constant. The introduction of a disloca-
tion decreased the effective misfit strain, allowing the
aspect ratio to drop spontaneously. The accompany-
ing model relied on a balance between the surface
energy, a dislocation energy and a strain energy which
was assumed to be proportional only to volume and
not dependent on shape. The present work shows that
similar oscillations would be predicted from
continuum considerations in which the strain energy
is assumed to be sensitive to the shape of the island.
The effect of adding additional material at constant
strain is to decrease & and, consequently, to increase
the equilibrium aspect ratio. The introduction of an
interfacial misfit dislocation reduces the misfit strain
by the ratio of the Burgers vector to the radius of the
interfacial area. This increases & and, hence, the equi-
librium aspect ratio of the island decreases.

2.2. Clustering

The discussion above has been concerned with the
spreading of an isolated island of fixed volume. Since
Fig. 3 demonstrates that interaction effects between
neighbouring islands are very localized, these results
can be used to determine approximately the critical
island size at which clustering is energetically favoured
over uniform film growth. Equation 3 presents the
critical radius with the assumption that an island can
support no elastic strain. Here, a modification to the
analysis of Tu et al. [1] is presented in which the
effects of a non-zero strain are incorporated.
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Assume a unit area of substrate, A, has a volume ¥,
of film deposited over it, and that n = 0. When the
film is in the form of a uniform layer, it will be of
a thickness h = V,, /A, so h represents the volume per
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Figure 7 Plot showing the equilibrium effective contact angle as
a function of &, for three different values of the modulus-mismatch
ratio. N =0. Key: ¢ X =0.1; B X =1; A £ =10.

unit area deposited on the substrate. A comparison
can be made between the total energies of the system
when the film covers the substrate uniformly, and
when it clusters into n equal sized islands per unit area.
The total energy for uniform coverage is given by

Utot(l * V) AO

EcedVo b+ nt3y s - ®
The total energy for n islands can be obtained from the
data for the minimum-energy configuration as a func-
tion of & (for n = 0) presented in Fig. 5. By comparing
these two results, a critical value for n at which the
energy for clustering becomes lower than the energy of
a uniform film can be determined and a relationship
between the normalized critical island size, V. /h, and
& can be obtained. This is plotted in Fig. 8, and com-
pared with the results of Equation 3 which can be
re-expressed as

V1/3 2 1/3 1 1/3\ —1
G ) ] e

2.3. Surface-tension induced stress

The results presented in this paper have ignored any
consideration that, in addition to any misfit strain that
may exist, a residual stress will be induced in the island
in response to the surface tension and any surface
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as a function of the interfacial-energy ratio, £&. £ = 1 and n = 0. Key:
@ including strain energy; 4 ignoring strain energy.

curvature. This was investigated using finite-element
calculations but the effect was found to be negligible
for the parameters considered. In this section a simple
dimensional argument will be presented to illustrate
the conditions over which the effect should be con-
sidered. First, it should be recognized that the effect of
the surface tension on the residual stress can be
modelled by assuming tractions are applied over the
surface with a magnitude given by v, (K; + K, ), where
Kk, and k, are the principal curvatures at any point.
The assumption that the island maintains a spherical
shape means that this effect can be modelled with
a uniform pressure applied over the surface of the
island. The strain energy associated with the surface
tension is, therefore, approximately given by
U, = 2yAV13g,(0)/E;, whereas the surface energy
term is given by U, = v+, V?3¢g,(0). A comparison
between these two terms indicates that the surface-
energy induced stress can probably be ignored pro-
vided the quantity vq/E;V1?® is very small. For
example, if a surface energy of about 1Jm~2 and
a modulus of about 100 GPa are assumed, the surface-
tension induced stress is negligible when the
island radius is greater than about 1 nm.

3. Conclusions
Using an approximation that the shape of an isotopic
island sitting on a substrate can be modelled as
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a spherical cap, the effect of aspect ratio on strain
energy was numerically computed. The results of the
computation were combined with analytical expres-
sions for the surface energy so as to obtain the total
energy of isolated islands with different aspect ratios.
The approximate equilibrium configuration was then
deduced by equating it to the minimum-energy config-
uration. It was shown that as the effective contact
angle increases (i.e. the aspect ratio of the island height
to contact-width increases), the strain-energy term
decreases. Hence, it was shown that if the relative
importance of the strain-energy term is increased by,
for example, increasing the magnitude of the misfit
strain or the island volume, the equilibrium aspect
ratio increases so as to counteract the strain-energy
effect. Conversely, increasing the surface-energy term
tends to decrease the equilibrium aspect ratio. The
effects of modulus mismatch, surface-energy-to-misfit-
strain ratio, and different interfacial energies were
shown to influence the aspect ratio in a similar
fashion.
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